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In this article, the motion of an object in the rotation reference framework and basics about Coriolis

force will be discussed. When we talk about any motion in a rotation framework, we should firstly

notice that the rotation reference is not inertial. Just like for any non-inertial reference, the Newton’s

second law cannot be directly used. For example, when we are trying bungee jumping, if we select

the ground as reference, then it is natural to have the equation: a = mg/m = g, which means our

acceleration is g relative to the ground. However if we choose the bungee rope as the reference, we

are actually stationary relative to the rope. But this time we still have the gravity, how can we then

keep stationary in the new reference framework? Why? The reason is that the second framework

we choose is non-inertial, where the normal Newton’s second law cannot be directly used. If we still

want to use the Newton’s second law in a non-inertial framework, we should introduce an ’artificial’

force, which is always called inertia force. If we have our non-inertial framework with acceleration

of a, the way we introduce the inertia force is through defining the inertia force correspondingly as

F
′

= −ma. Given the definition of inertia force, we can easily apply Newton’s second law on our

previous bungee jumping problem (set bungee rope as our reference) to have: F
′
+mg = −mg+mg

= 0, which then means we are stationary in the non-inertial reference framework.

Figure 1. The illustration for rotation framework.

Keeping the definition of inertia force in mind, let’s then have a look at the rotation framework. As

we all know, any rotation framework is not inertial since we always have the centripetal acceleration

(of course, if we choose an inertial framework to observe the rotating system). Fig. 1. shows a

rotation framework, which basically depicts the condition when we have a plate rotating (angular

velocity is ω) on the surface of a desk (without friction). Now let’s put a block (with mass m) on
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the rotating plate, and again we ignore the friction between the plate and the block. Moreover, for

the following discussion based on the system shown by Fig. 1., we only take the horizontal direction

into consideration since gravity and reaction force makes equiblium in vertical direction. Then do

you think the block on the plate will move if we observe it from the ground? No, it will never move

relative to the ground since we don’t have any force exerted on the block in horizontal direction.

What about choosing the rotating plate as our reference? When we choose the rotating plate as the

reference, the block on the plate is not stationary any more. Actually, it is ’rotating’ relative to the

plate as well. It is easy to imagine the block is moving relative to the rotating plate, but why do we

say it is ’rotating’ as well? If we have a look at Fig. 1., and we say the distance from the block to the

center of the plate is r2, then we should have every point passing by the block (just under it) with

the velocity of v2 = ω× r2. Thus the velocity of the block relative to the point just under the block

on the plate should be v
′
2 = −ω × r2. Then we could imagine a virtual ’rotation’ shown by dashed

circle in Fig. 1., where we have the block always at the top of the virtual rotation. Without any

further knowledge, we could also imagine the virtual rotation is with the same radius as r2. Thus

we should have r
′
2 = r2 in Fig. 1., since we could notice that there is some kind of symmetry in

there. And later we will see that our intuition is correct. Now, let’s go back to the rotating plate

and calculate the acceleration of the point just under the block. The result should be a = −ω2r2,

and then we should have corresponding inertia force F
′

= mω2r2. For the virtual rotation that we

have imagined, the inertia force F
′

is just the force we need to provide the centropetal acceleration,

and that’s the only horizontal force exerted on the block in the rotation reference framework. Since

we already have the velocity v
′
2 = −ω × r2 of the block relative to the plate, then we should have:

F
′

= mω2r2 = m
v
′ 2
2

r
′
2

r̂2 = m
ω2r22
r
′
2

r̂2 (r̂2 is the unit vector corresponding to r2), from which we can

easily tell that r
′
2 = r2. That means our previous intuition for the radius of the virtual rotation

is correct. So basically, in the rotating framework given by Fig. 1., we have the block (which is

stationary relative to the ground) ’rotating’ relative to the plate, where the inertia force F
′

provides

the centripetal acceleration for the virtual rotation.

Then let’s have a look at a little bit more complex system shown in Fig. 2., where we have the same

rotating plate and the block on it. But this time, let’s imagine the block is moving away from (Fig.

2. (a)) or towards (Fig. 2. (b)) the center of the plate with the velocity of v
′
r. If observed from the

ground, the block will be with constant velocity since we don’t have any horizontal force exerted on

it. However if we select the plate as our reference, the block is moving tangentially relative to the

plate with the velocity of v
′
2 as shown in Fig. 2. As we already know from the previous problem

where the block is stationary relative to ground, the relative velocity v
′
2 to the plate does depend

on the distance from the block to the center of the plate. Thus in this case where we have the

block moving towards or backwards the center of the plate, the changing of radius r2 in the previous

problem leads to the changing of relative velocity v
′
2 of the bolck to the plate. For Fig. 2. (a),

v
′
2 keeps increasing since r2 is increasing, and the other way round for the case shown in Fig. 2.

Sch. of Phys. & Astr.
QMUL 2



CCMMP Yuanpeng Zhang

Figure 2. The illustration for rotation framework, where the object is moving.

(b). This means in the rotation framework (the plate), we should have corresponding force, which

could provide the acceleration needed for the changing of the relative tangential velocity v
′
2. And

that force is just part of the Coriolis force, which is, obviously, inertia force. Here let’s remember

the expression ’part of’ for now, and we will come back later to discuss why we say ’part of the

Coriolis force’ here. Let’s recall another inertia force in the system, which is the centrifugal force

F
′

= mω2r2. And for the imagined virtual rotation of the block (see the previous problem), we

always have: F
′
= mω2r2 = m

v
′ 2
2

r2
r̂2 = m

ω2r22
r2

r̂2 = mω2r2, which means no matter where the block is,

the centrifugal force F
′

is always totally spent on providing centripetal acceleration for the virtual

rotation. Thus it is natural that the centripetal or centrifugal velocity of the block does not change.

Now let’s calculate the relative tangential acceleration of the block to the plate. Here we only discuss

Fig. 2. (a), and Fig. 2. (b) is quite similar. During time interval ∆t after the block leaves the center

of the plate, we should have: r2 = v
′
1∆t, and then we have v

′
2 = ωr2 = ωv

′
1∆t. Then we could get the

magnitude for the tangential accerlaeration ac = ωv
′
1. However if we notice the Coriolis force labeled

in Fig. 2., we should have the magnitude for Coriolis acceleration as: ac = 2ωv
′
. Puzzled? Why we

have two different ac here? Why we have a factor ’2’ for real Coriolis acceleration? It seems they
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should be the same, both of which are for the relative tangential acceleration of the block! Now let’s

go back to the ’part of’ expression that we didn’t talk about just now. Let’s take a look at the block

again, and we first observe it from the ground. The velocity vector v
′
1 always point straightforward

down in this case. Then what about observing it from the perspective of the rotating plate? Is v
′
1

still always going down? No! Because the plate is rotating, thus the velocity vector of the block is

always changing its direction relative to the plate! Then what? We have v
′
1 changing its direction

from time to time, thus we should have a tangential acceleration (to change the direction of v
′
1,

again relative to the plate), which is just another part of the Coriolis acceleration! This part of

tangential acceleration together with the other part tangential acceleration that we directly derived

above contributes to the final factor ’2’ in Coriolis acceleration.

Figure 3. Illustration for object motion on rotating plate, where we have a tube through the center

of the plate to restrict the object.

Now let’s go to next system as shown in Fig. 3., which is again a bit more complex than the previous

one. When the block is restricted within the tube, it has to follow the rotation of the plate, which

means there is no relative motion of the block to the plate in tangential direction. And also the

direction of centrifugal velocity v
′
2 (relative to the plate) does not change, either. So basically we

Sch. of Phys. & Astr.
QMUL 4



CCMMP Yuanpeng Zhang

have equilibrium in the tangential direction, which should attribute to the resistance against the

Coriolis force from the reaction force as shown in Fig. 3. (a) & (b). Since we don’t have the relative

motion of the block to the plate in tangential direction, we then don’t have the virtual rotation as in

the previous two problems. That means the centrifugal force F
′

is totally spent on accelerating the

block in centrifugal direction, which then makes v
′
2 larger and larger in Fig. 3. (a), or smaller and

smaller in Fig. 3. (b).

Before going on the discussion, let’s review all the previous problems, and this time we look at them

from the perspective of energy. In the rotation framework, we have corresponding inertia centrifugal

force, which tends to push any objects in the rotation framework far away from the center. That

means we have potential in the rotation system, which is the potential for any objects in the rotation

system to go away from the center. It is just like what we have on earth where we have the gravity

which then tends to pull everything down to the earth. And if an object is located at high altitude, it

has the potential to fall down and transform the potential energy to kinetic energy. For the first two

problems in this article, we have the potential there, but why didn’t the potential energy transform

to kinetic energy? What prevents that transformation (it seems that we don’t have any resistance

against the centrifugal force there)? It is the virtual rotation that we imagined for the first two

problems that ’resists’ the centrifugal force to prevent it from pushing our object away from the

center! Actually, it is just like the space station, when we are rotating around our earth, we cannot

’feel’ the gravity since the whole gravity is spent on providing us with the centripetal acceleration.

However for the third problem discussed above, there is resistance from the wall of the tube to prevent

the block from moving relative to the plate in tangential direction (actually, it prevents the virtual

rotation as we imagined for the first two problems). Thus the centrifugal force has nowhere to spend,

and it ’has to’ be used on accelerating the block along the centrifugal or centripetal direction. Then

we have the potential energy in the rotation framework transforming to kinetic energy (Fig. 3.) or

the other way round (Fig. 3. (b)).

Finally, let’s look at another problem in the rotation frame, which is shown in Fig. 4. Here let’s

imagine a string going through the center of the plate and tied to the block. The plate is again

rotating with the angular velocity of ω, and at the same time we pull the string from the other

end to drag the block towards the center of the plate. At the beginning, the string and the block

rotates together with the plate (the string and block are stationary to the plate), which then gives

the velocity v1 = ω×r1 of the block relative to the ground (so we should have the tension FT = m
v21
r1

in the string). Then we starts to pull the string harder to drag the block to the center of the plate,

keeping constant velocity v
′
2. Then let’s think about the tangential velocity v1, will it change its

magnitude? Of course not, since we don’t have any tangential force exerted on the block! Then we

can understand why we need to pull ’harder’ since our radius of the rotation for the block is reduced

as we pull it towards the center (remember FT = m
v21
r

). Let’s now turn into our rotating plate as

our reference. Firstly, we should have the centrifugal force (which is inertia force) in equiblium with
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Figure 4. The illustration for the motion of an object on the rotating plate. Here the object is tied

to a string through the center of the plate.

the tension in the string, keeing the block moving in contant velocity in the centripetal direction.

Then for the tangential direction, at the beginning, the velocity of the block relative to the plate is

0. As the block goes towards the center of the plate, its tangential velocity relative to the ground

does not change as we discussed above, but the velocity of the point (just under the block) on

the rotating plate does change. After time interval ∆t from the beginning, the distance between

the block and the center of the plate becomes: r1 − v
′
2∆t. Just under the block, the velocity of

the point on the plate then is:
r1−v

′
2∆t

r1
v1. Thus the relative velocity of the block to the plate is:

v1− r1−v
′
2∆t

r1
v1 =

v
′
2∆t

r
v1 = ωv

′
2∆t. Again we use the formula of Criolis acceleration to give the relative

tangential acceleration of the block to the plate: ac = 2ωv
′
2. Again we have the factor ’2’ here and if

we calculate the relative tangential velocity of the block to the plate using the Coriolis acceleration,

it will again contradict with the result that we derived above. Why? Let’s recall our explanation

for the second problem, where we say the Coriolis acceleration contains two parts. The first part

is spent on increasing the magnitude of tangential relative velocity of the block to the plate, which

accounts for the result ωv
′
2∆t derived above. The other part is spent on changing the direction of

the centripetal velocity v
′
2, as we can see from Fig. 4. the direction changing of v

′
2.

So basically, Coriolis force is the inertia force in non-inertial reference framework to account for the

changing of relative speed in tangential direction. If we look at our object in an inertia framework,

there will never be Coriolis force at all! But why do we bother with Coriolis force? Why don’t

we always choose inertial force to make our life easier? The fact is, our earth is just a rotation

framework! We stand on earth, thus it is natural to select our earth as the reference, and sometimes,

we have to consider the effect of Coriolis force, e.g. the formation of tornado.
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