
Klein-Gordon Equation
● The existence of plane waves

φ(r, t) ∝ exp(ik · r − iωt)

satisfying de Broglie and Einstein relations

p = !k , E = !ω

implies the quantum operator interpretation

p→ −i!∇ , E → i! ∂

∂t
.

● Then the relativistic energy-momentum equation

E2 = p2c2 + m2c4

implies the Klein-Gordon equation

−!2 ∂2φ

∂t2
= −!2c2∇2φ + m2c4φ
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● In covariant notation (see handout)
[
∂µ∂µ +

(mc

!

)2
]

φ = 0

where

∂µ∂µ =
1
c2

∂2

∂t2
−∇2

● KG wave function φ is a Lorentz-invariant (scalar) function; Lorentz
transformation r, t→ r′, t′ implies φ→ φ′ where

φ′(r′, t′) = φ(r, t) .

Hence it must represent a spin-zero particle (no orientation).

● Since |φ|2 is also invariant, this cannot represent a probability density. A
density transforms as time-like (0-th) component of a 4-vector, due to Lorentz
contraction of volume element.
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● Correct definition of density follows from the continuity equation:

∂ρ

∂t
= −∇ · J

(J = corresponding current vector), i.e.

∂µJµ = 0

where Jµ = (cρ, J) is the 4-current.

● We can obtain an equation of this form from the KG equations for φ and φ∗,

i!
(

φ∗
∂2φ

∂t2
− φ

∂2φ∗

∂t2

)
= i!c2

(
φ∗∇2φ− φ∇2φ∗

)
,

i! ∂

∂t

(
φ∗

∂φ

∂t
− φ

∂φ∗

∂t

)
= i!c2∇ · (φ∗∇φ− φ∇φ∗) .

Hence

ρ = i!
(

φ∗
∂φ

∂t
− φ

∂φ∗

∂t

)

J = −i!c2 (φ∗∇φ− φ∇φ∗)

i.e. Jµ = i!c2(φ∗∂µφ− φ∂µφ∗).
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● Normalization is such that the energy eigenstate φ = Φ(r)e−iEt/! has
ρ = 2E|Φ|2. Thus |Φ| = 1 corresponds to 2E particles per unit volume
(relativistic normalization).

● Compare with Schrödinger current

JS = − i!
2m

(φ∗∇φ− φ∇φ∗) =
1

2mc2
JKG

which thus has in fact E/mc2 particles per unit volume.
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Problems with Klein-Gordon Equation

1. Density ρ is not necessarily positive (unlike |φ|2) ⇒ equation was rejected
initially.

2. Equation is second-order in t ⇒ need to know both φ and ∂φ
∂t at t = 0 in order

to solve for φ at t > 0. Thus there is an extra degree of freedom, not present in
the Schrödinger equation.

3. The equation on which it is based (E2 = p2c2 + m2c4) has both positive and
negative solutions for E.

● Actually these problems are all related, since a solution φ = Φ(r)e∓iEt/! has
ρ = ±2E|Φ|2, and so for the general solution

φ = Φ+(r)e−iEt/! + Φ−(r)e+iEt/!

both φ(t = 0) = Φ+ + Φ− and i!
E

∂φ
∂t

∣∣∣
t=0

= Φ+ − Φ− are needed in order to
specify Φ+ and Φ−.
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Electromagnetic Waves
● In units where ε0 = µ0 = c = 1 (‘Heaviside-Lorentz’) Maxwell’s equations are

∇ ·E = ρem , ∇×E = −∂B

∂t

∇ ·B = 0 , ∇×B = Jem +
∂E

∂t

where (ρem, Jem) = Jµ
em is the electromagnetic 4-current.

● In terms of the scalar and vector potentials V and A,

E = −∂A

∂t
−∇V , B = ∇×A .

So we find

∇× (∇×A) ≡ ∇(∇ ·A)−∇2A = Jem −
∂2A

∂t2
−∇∂V

∂t

● In terms of the 4-potential Aµ = (V, A)

(∂ν∂ν)Aµ − ∂µ(∂νAν) ≡ ∂νF νµ = Jµ
em
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where the electromagnetic field-strength tensor is

F νµ = ∂νAµ − ∂µAν = −Fµν .

● E and B, and hence Maxwell’s equations, are invariant under gauge
transformations

Aµ → A′µ = Aµ + ∂µχ

where χ(r, t) is an arbitrary scalar function.

● Therefore we can always choose Aµ such that ∂µAµ = 0 (Lorenz gauge). If
∂µAµ = f (= 0, we can change to A′µ = Aµ + ∂µχ where ∂µ∂µχ = −f .

● Then in free space (Jµ = 0) we have ∂ν∂νAµ = 0.

❖ Massless KG equation for each component of Aµ

❖ Aµ is ‘wave function’ of photon

❖ Aµ is a 4-vector ⇒ photon has spin 1.

● Plane wave solutions Aµ = εµ exp(ik · r − iωt) ≡ εµe−ik·x where εµ =
polarization 4-vector, k · x ≡ kµxµ, kµ = (ω, k) = wave 4-vector.
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● From wave equation k · k = 0 hence ω2 = k2, i.e. E2 = p2c2 (massless
photons).

● From Lorenz gauge condition ε · k = 0 ⇒ ε0 = ε · k/ω.

● Polarization 4-vector ε′µ = εµ + akµ is equivalent to εµ for any constant a.
Hence we can always choose ε0 = 0. Then Lorenz condition becomes
transversity condition: ε · k = 0.

● E.g. for k along z-axis we can express εµ in terms of plane polarization states

εµ
x = (0, 1, 0, 0) , εµ

y = (0, 0, 1, 0) ,

or circular polarization states εµ
R,L = (0, 1,±i, 0)/

√
2.

N.B. only 2 polarization states for real photons.
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Electromagnetic Interactions
● As in classical (and non-relativistic quantum) physics, we introduce e.m.

interactions via the minimal substitution in the equations of motion:

E → E − eV , p→ p− eA

i.e.
pµ → pµ − eAµ , ∂µ → ∂µ + ieAµ

● The Klein-Gordon equation becomes

(∂µ + ieAµ)(∂µ + ieAµ)φ + m2φ = 0 ,

(∂µ∂µ + m2)φ = −ie[∂µ(Aµφ) + Aµ(∂µφ)] + e2AµAµφ

The conserved current is now (! = c = 1)

Jµ = i(φ∗∂µφ− φ ∂µφ∗)− 2eAµφ∗φ
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Klein Paradox
● Consider KG plane waves incident on electrostatic barrier, height V , width a

R e

A e T e

B e

e

−ipx−iEt −ip’x−iEt

ip’x−iEt ipx−iEtipx−iEt

x=ax=0

V

KG equation for x < 0, x > a gives E2 = p2 + m2

⇒ p = +
√

E2 −m2

(sign from B.C.).

● In 0 < x < a, Aµ = (V,0) and so (E − eV )2 = p′2 + m2

⇒ p′ = +
√

(E − eV −m)(E − eV + m)

(sign choice is arbitrary since we include ±p′).
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● Matching φ and ∂φ/∂x at x = 0 and a gives (as for Schrödinger equation)

|T |2 =
∣∣∣∣cos p′a− i

2

(
p

p′
+

p′

p

)
sin p′a

∣∣∣∣
−2

● Now consider behaviour as V is increased:

❖ eV < E −m: p′ is real, |T | < 1 (|T | = 1 when p′a = nπ).

❖ E −m < eV < E + m: p′ is imaginary, |T | < 1, transmission by tunnelling.

❖ eV > E + m: p′ is real again! |T | = 1 when p′a = nπ!?

● Note that when eV > E + m density inside barrier is negative:

ρ′ = 2(E − eV )|φ|2 < −2m|φ|2

● Meanwhile, the current inside remains positive, J ′
x = 2p|T |2 (current

conservation). Hence when eV > E + m there is a negative density flowing
from right to left, giving a positive current. We interpret this as a flow of
antiparticles: Jµ

em = eJµ always.
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● When eV > E + m and |T | = 1, antiparticles created at the back of the barrier
(x = a) travel to x = 0 and annihilate the incident particles. At the same time,
particles created at x = a travel to x > a, replacing the incident beam.

EE =0E

ππ+ +π

● Antiparticles are trapped inside the barrier, but field is zero there, so there can
be perfect transmission for any thickness.
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● Antiparticles are like particles propagating backwards in time

x

t

π

π

π+

+

+

x

t

π+ π+π−

eV > E+meV < E−m
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Charge Conjugation

● If φ is a negative-energy plane-wave solution of the KG equation, with
momentum p, φ = exp(ip · r + iEt) (E > 0), then φ∗ = exp(−ip · r − iEt) is a
positive-energy wave with momentum −p. Furthermore, in e.m. fields, φ∗

behaves as a particle of charge −e:

(∂µ + ieAµ)(∂µ + ieAµ)φ + m2φ = 0

⇒ (∂µ − ieAµ)(∂µ − ieAµ)φ∗ + m2φ∗ = 0

● Thus if φ is a negative-energy solution, we take it to represent an antiparticle
with wave function φ∗ (and hence positive energy, opposite charge and
momentum).

● Correspondingly, KG equation is invariant w.r.t. φ→ φ∗, e→ −e. This is
called charge conjugation, C.

N.B. Under C, Jµ → −Jµ as expected.
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Electromagnetic Scattering
● We assume (for the moment) the same formula as in NRQM for the scattering

amplitude in terms of the first-order perturbation due to e.m. field:

Afi = −i

∫
φ∗f{ie[∂µ(Aµφi) + Aµ(∂µφi)]}d4x

by parts = e

∫
Aµ[φ∗f (∂µφi)− (∂µφ∗f )φi]d4x

= −ie

∫
AµJµ

fid
4x

where Jµ
fi = i[φ∗f (∂µφi)− (∂µφ∗f )φi] is generalization of Jµ to φf (= φi

(transition current). Note that to get Afi to order e1 we only need Jµ
fi to

order e0. Similarly, for Aµ we can use the free-field form

Aµ = εµe−ik·x

● For plane waves, φf,i = e−ipf,i·x,

Jµ
fi = (pi + pf )µei(pf−pi)·x
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Hence

Afi = −ieεµ(pi + pf )µ

∫
ei(pf−pi−k)·xd4x

= −ie(2π)4ε · (pi + pf ) δ4(pf − pi − k)

● This corresponds to the Feynman rules for the diagram

p

p

k f

i

❖ An overall factor of (2π)4 δ4(pf − pi − k) (momentum conservation)
❖ εµ for an external photon line
❖ −ie(pi + pf )µ for a vertex involving a spin-0 boson of charge e.
N.B. 4-momentum cannot be conserved in this process for free particles! But
we shall see that it can occur as part of a more complicated process, e.g.
particle-particle scattering by photon exchange.
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● We shall consider process ab→ ab as scattering of a in e.m. field of b (both
spin-0).

Afi = −iea

∫
AµJµ

a′ad4x

a
p p

p p

a

b

’

b
’

q=pb’ b−p

● Then (in Lorenz gauge) Aµ satisfies

∂ν∂νAµ = eb Jµ
b′b

N.B. We assume correct source current is

Jµ
b′b = (pb + p′b)

µei(p′
b−pb)·x
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● Solution for 4-vector potential is then

Aµ = − 1
q2

eb(pb + p′b)
µeiq·x

where q = p′b − pb and q2 = q · q.

● Hence

Afi =
ieaeb

q2
(pa + p′a) · (pb + p′b)

∫
ei(p′

a+p′
b−pa−pb)·xd4x

= [−ie(pa + p′a)µ]
[
−igµν

q2

]
[−ie(pb + p′b)

ν ]

×(2π)4δ4(p′a + p′b − pa − pb)

N.B. symmetry in a, b.

● Thus we have the additional Feynman rule:

❖ −igµν/q2 for an internal photon line.
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● In processes involving antiparticles, remember we use particles with opposite
energy and momentum; pµ = −p̄µ.

pa

pa

−
q

“pi”=pa, “pf”=−p̄a, “k”=−q,

Afi = −iea(2π)4ε · (pa − p̄a)δ4(q − pa − p̄a)

p

pb

b

−
q

“pi”=−p̄b, “pf”=pb, “k”=q,

Afi = −ieb(2π)4ε · (pb − p̄b)δ4(pb + p̄b − q)
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● Annihilation process

bp

pbpa

pa

− −
q

Afi = i
eaeb

q2
(pa − p̄a) · (pb − p̄b)(2π)4δ4(pb + p̄b − q)

where q = pa + p̄a = pb + p̄b.

● Since we have already normalized to 2E particles per unit volume, we have

Afi = Mfi (2π)4δ4(
∑

pf −
∑

pi)

where Mfi is the invariant matrix element (see handout).

● Thus e.g. for annihilation process

Mfi = i
eaeb

q2
(pa − p̄a) · (pb − p̄b)
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● In terms of the Mandelstam variables

s = (pa + p̄a)2 = q2

t = (pb − pa)2 = (p̄a − p̄b)2

u = (pa − p̄b)2 = (p̄a − pb)2

we get
Mfi = i

eaeb

s
(u− t)

and hence the invariant differential cross section is

dσ

dt
=

e2
ae2

b(u− t)2

64πs3(p∗a)2

where p∗a =
√

s/4−m2
a = c.m. momentum of a.
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Dirac Equation

● Historically, Dirac (1928) was looking for a covariant wave equation that was
first-order in time, to avoid the above ‘problems’ of the Klein-Gordon equation:

i!∂ψ

∂t
= βmc2ψ − i!c α · ∇ψ ≡ HDiracψ

● We want ψ also to satisfy KG equation ⇒ β, αx, αy, αz are matrices. Setting
! = c = 1:

−∂2ψ

∂t2
= βmi

∂ψ

∂t
+ α · ∇∂ψ

∂t
= β2m2ψ − im(βα + αβ) · ∇ψ − (α · ∇)2ψ

= m2ψ −∇2ψ (KG equation)

Hence β2 = α2
x = α2

y = α2
z = 1 and βαj + αjβ = αjαk + αkαj = 0 for all

j (= k = x, y, z. This means that β, αx, αy, αz are (at least) 4× 4 matrices.
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● A suitable representation is

β =





1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1




≡



 I 0

0 −I





αj =



 0 σj

σj 0





where σj are the Pauli matrices:

σx =



 0 1

1 0



 , σy =



 0 −i

i 0



 , σz =



 1 0

0 −1




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● Then ψ is represented by a 4-component object called a spinor (not a 4-vector!)

ψ =





ψ1

ψ2

ψ3

ψ4





N.B. Each component ψ1,2,3,4 satisfies the KG equation.

● For a particle at rest, ψ = φ exp(−imc2t/!), Dirac equation ⇒ φ = βφ, and so

φ =





φ1

φ2

0

0





where φ1,2 tell us the spin orientation.
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● For antiparticle at rest, ψ = φe+imc2t/! ⇒ φ = −βφ, so

φ =





0

0

φ3

φ4





where φ3,4 now give spin orientation.
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Spin of Dirac Particles
● How do we prove that Dirac equation corresponds to spin one-half? We must

show that there exists an operator S such that J = L + S is a constant of
motion, and (! = 1) S2 = S(S + 1) = 3

4I.

● Note first that L = r × p is not a constant of motion:

H = βm + α · p
[Lz, H] = [x, H]py − [y, H]px

= iαxpy − iαypx .

In general, [L, H] = iα× p (= 0.

● Thus we need [S, H] = −iα× p.
This is true if S = 1

2Σ where

Σj =



 σj 0

0 σj



 = −iαxαyαzα .

Then S2 = 1
4 (Σ2

x + Σ2
y + Σ2

z) = 3
4I, proving that S = 1

2 .
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Magnetic Moment
● In an electromagnetic field we make the usual minimal substitutions:

H → H − eV , p→ p− eA

in the Dirac equation, to obtain

H = α · (p− eA) + βm + eV

● Note that we no longer get the KG equation when we “square”:

(H − eV )2 =
∑

j,k

αjαk(pj − eAj)(pk − eAk) + m2

= (p− eA)2 + m2 − e
∑

j,k

(αjαkpjAk + αjαkAjpk)

Now for j (= k,

αjαk = iεjklΣl , pjAk = Akpj − i∇jAk

εjklΣl∇jAk = Σ · (∇×A) = Σ ·B
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Hence

(H − eV )2 = (p− eA)2 + m2 − eΣ ·B

H − eV * m +
1

2m
(p− eA)2 − e

2m
Σ ·B

● This corresponds to a magnetic moment

µ =
e

m
S = ge

( e

2m

)
S

where ge = 2 (experiment ⇒ 2.0023193. . . ).
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Dirac Density and Current

● Write Dirac equation as

∂ψ

∂t
= −imβψ −α · (∇ψ)

● Transpose and complex conjugate:

∂ψ

∂t

†
= +imψ†β − (∇ψ†) ·α

N.B. β, α are hermitian. Hence

∂

∂t
(ψ†ψ) = −∇(ψ†αψ)

● Thus we can take

ρ = ψ†ψ ≡ |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2

J = ψ†αψ
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N.B. Density ρ is positive definite! This is what Dirac wanted, but it is really a
problem – what about antiparticles?!

● Answer will not come until we learn some quantum field theory.
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Covariant Notation

● Nobody uses α and β any more. Instead we define γ-matrices:

γ0 = β , γj = βαj (j = 1, 2, 3)

⇒ γµγν + γνγµ ≡ {γµ, γν} = 2gµν . Also define

ψ̄ ≡ ψ†β = (ψ∗
1 , ψ∗

2 ,−ψ∗
3 ,−ψ∗

4)

in usual (‘Bjorken and Drell’) representation. Then

ρ = ψ†ψ = ψ†β2ψ = ψ̄γ0ψ

J = ψ†αψ = ψ†β2αψ = ψ̄γψ

and Jµ is a 4-vector:
Jµ = (ρ, J) = ψ̄γµψ
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● We can also show that

ψ̄ψ = |ψ1|2 + |ψ2|2 − |ψ3|2 − |ψ4|2

transforms like a scalar (invariant) under Lorentz transformations.

● Multiplying through by β, Dirac equation becomes

iγ0 ∂ψ

∂t
= mψ − iγj∇jψ

Hence

(γµ∂µ + im)ψ = 0

(γµpµ −m)ψ = 0
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Free-Particle Spinors

● A positive-energy plane wave

ψ = u(E, p) exp(ip · r − iEt)

satisfies (γµpµ −m)u = 0. Writing

u =



 φ

χ



 =





φ1

φ2

χ1

χ2





this means that 

 E −m −σ · p

+σ · p −E −m







 φ

χ



 = 0

Thus χ =
σ · p

E + m
φ
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● Remember that

S = 1
2Σ = 1

2



 σ 0

0 σ





Hence

φ = N



 1

0



 for spin up (along z-axis)

= N



 0

1



 for spin down

We have also

σ · p



 1

0



 =



 pz

px + ipy



 , σ · p



 0

1



 =



 px − ipy

−pz




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Thus

u↑ = N





1

0
pz

E+m
px+ipy

E+m




, u↓ = N





0

1
px−ipy

E+m
−pz

E+m




.

❖ Normalization is as usual ρ = ψ†ψ = u†u = 2E particles per unit volume.
This gives

N2

[
1 +

p2
x + p2

y + p2
z

(E + m)2

]
= 2E

Using p2 = E2 −m2 gives N =
√

E + m.

❖ Notice that the ‘small’ (3,4) components are O(v/c) relative to ‘large’ ones
(1,2).

● For antiparticle of 4-momentum (E, p) we need solution with pµ → (−E,−p):

ψ = v(E, p) exp(−ip · r + iEt)
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From the Dirac equation we now find


 −E −m σ · p

−σ · p E −m







 φ

χ



 = 0

Thus φ =
σ · p

E + m
χ

● Like 4-momentum, spin must be reversed, so

v↑ = N





px−ipy

E+m
−pz

E+m

0

1




, v↓ = N





pz

E+m
px+ipy

E+m

1

0




.
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Charge Conjugation

● Like the KG equation, the Dirac equation has charge conjugation symmetry. If
ψ is a negative-energy solution, there is a transformation

ψ → ψc = Cψ∗

such that ψc is a positive-energy solution for charge −e. To find C:

γµ(∂µ + ieAµ)ψ + imψ = 0

⇒ γ∗µ(∂µ − ieAµ)ψ∗ − imψ∗ = 0

⇒ −Cγ∗µC−1(∂µ − ieAµ)ψc + imψc = 0 .

Hence we need Cγ∗µC−1 = −γµ, i.e. γµC = −Cγ∗µ.
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● Since all γµ are real except γ2 (which is pure imaginary) in our standard
representation, we can take

C = iγ2 =





0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0





Explicitly, for free particles, v↑c = u↑, v↓c = −u↓
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Parity Invariance

● Similarly if ψ(r, t) is a solution of the Dirac equation, there exists a
transformation

ψ(r, t)→ ψP (r, t) = Pψ(−r, t)

such that ψP is also a solution. Now
(

γ0 ∂

∂t
− γ · ∇+ im

)
ψ(r, t) = 0

⇒
(

γ0 ∂

∂t
+ γ · ∇+ im

)
ψ(−r, t) = 0

⇒
(

Pγ0P−1 ∂

∂t
+ PγP−1 · ∇+ im

)
ψP (r, t) = 0 .

Hence we need Pγ0P−1 = γ0 , PγP−1 = −γ ,

i.e Pγ0 = γ0P , Pγj = −γjP (j = 1, 2, 3)
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● These relations are satisfied by

P = γ0 =





1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1





● For a particle at rest,

ψ = u(m,0) e−imt , ψP = +ψ

but for an antiparticle at rest

ψ = v(m,0) e+imt , ψP = −ψ

Thus particle and antiparticle have opposite intrinsic parity.

● Notice that for KG equation the parity transformation is simply

φ(r, t)→ φP (r, t) = φ(−r, t)
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i.e. φ is a true scalar function, since
(

∂2

∂t2
−∇2 + m2

)
φ(r, t) = 0

⇒
(

∂2

∂t2
−∇2 + m2

)
φ(−r, t) = 0

● For the Dirac equation, the scalar is not ψ but

Φ = ψ̄ψ = ψ†γ0ψ

Check:

Φ(r, t) = ψ†(r, t)γ0ψ(r, t)

ΦP (r, t) = ψ†(−r, t)γ0†γ0γ0ψ(−r, t)

= ψ†(−r, t)γ0ψ(−r, t)

= Φ(−r, t)
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● Similarly, Jµ is a true vector:

Jµ(r, t) = ψ†(r, t)γ0γµψ(r, t)

JPµ(r, t) = ψ†(−r, t)γ0†γ0γµγ0ψ(−r, t)

But γ0†γ0γµγ0 = γµγ0 = γ0γµ for µ = 0, = −γ0γµ for µ = 1, 2, 3. Hence, as
expected for a true vector,

JP0(r, t) = J0(−r, t) , JP (r, t) = −J(−r, t) .

● Weak interactions involve the axial current

Jµ
A = ψ̄γµγ5ψ

where

γ5 = iγ0γ1γ2γ3 =



 0 I

I 0





in our standard representation.
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● Under parity transformations Jµ
A is an axial vector:

JPµ
A (r, t) = ψ†(−r, t)γµγ5γ0ψ(−r, t)

Now γ5γ0 = −γ0γ5 (actually γ5γµ = −γµγ5 for all µ = 0, 1, 2, 3), so

JP0
A (r, t) = −J0(−r, t) , JP

A(r, t) = J(−r, t)

as expected for an axial vector.

● Similarly ΦP = ψ̄γ5ψ is a pseudoscalar

ΦP
P (r, t) = ψ†(−r, t)γ5γ0ψ(−r, t)

= −ψ̄(−r, t)γ5ψ(−r, t)

= −ΦP (−r, t)
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Massless Dirac Particles

● For m = 0 the positive-energy free particle solutions are

ψ = u(E, p) exp(ip · r − iEt)

where E = |p| and so u =



 φ

χ



 gives



 |p| −σ · p

σ · p −|p|







 φ

χ



 = 0

Hence χ = Λφ where Λ = σ · p/|p| is the helicity operator: Λ = ±1 for spin
aligned along/against direction of p (‘right/left-handed’)

● Note that if ψ represents a massless particle then

γ5ψ =



 Λφ

φ



 = Λψ (Λ2 = 1)
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● Hence γ5 is the helicity operator for massless particles (minus helicity for
massless antiparticles).

● Weak interactions are ‘V–A’, i.e. they involve the current

(Jµ − Jµ
A)fi = ψ̄fγµ(1− γ5)ψi

If i is a massless particle, then (1− γ5)ψi vanishes for helicity +1, i.e. only
left-handed states interact. The same applies to particle f , since

ψ̄fγµ(1− γ5)ψi = ψ†
fγ0(1 + γ5)γµψi =

[
(1− γ5)ψf

]†
γ0γµ)ψi

❖ Thus if neutrinos are massless, only left-handed neutrinos (right-handed
antineutrinos) interact.

❖ In the Standard Model, neutrinos are massless and right-handed neutrinos
do not exist.

❖ This is consistent with relativity, because helicity is frame-independent for
massless particles.

❖ In reality neutrinos do have mass, so both helicities must exist, but the
right-handed states interact more weakly (as for electrons).
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Electromagnetic Interactions
● We already saw that in an e.m. field Dirac Hamiltonian is

H = α · (p− eA) + βm + eV

= H0 + eγ0γµAµ

where H0 is the free-particle Hamiltonian.

● Hence first-order perturbation theory gives a transition amplitude

Afi = −i

∫
ψ†

f (eγ0γµAµ)ψid
4x

= −ie

∫
Jµ

fiAµd4x

where Jµ
fi = ψ̄fγµψi.

● For plane waves, ψf,i = uf,ie−ip·x, and so the only difference from the KG
(spin zero) case is that we need a vertex factor of

−ieūfγµui

for spin one-half instead of −ie(pf + pi)µ for spin 0.
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● Invariant matrix element is

Mfi =
ieaeb

q2
(ūa′γµua)(ūb′γµub)

a
p p

p p

a

b

’

b
’

q=pb’ b−p

Hence

|Mfi|2 =
e2
ae2

b

t2
Lµν

a Lb
µν

where

Lµν
a = (ūa′γµua)(ūa′γνua)∗

Lb
µν = (ūb′γµub)(ūb′γνub)∗
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● For given spin states of a, b, a′ and b′, we can evaluate these tensors explicitly
using the above expressions for free-particle spinors. However, we often
consider unpolarized scattering, when we have to average over initial and sum
over final spin states. Then

Lµν
a = 1

2

∑

spins

(ūa′γµua)(ūa′γνua)∗

and similarly for Lb
µν . This can be evaluated using the algebra of the

γ-matrices.
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Gamma Matrix Algebra
● The tensor

Lµν
a = 1

2

∑

spins

(ūa′γµua)(ūa′γνua)∗

can be expressed in terms of traces of products of γ-matrices, using
∑

spins

uū = u↑ū↑ + u↓ū↓ = γµpµ + m

We also have

(ūa′γνua)∗ = (u†
a′γ0γνua)∗ = u†

aγν†γ0ua′ = ūaγνua′

since γν†γ0 = γ0γν .

● Thus
Lµν

a = 1
2

∑

a′ spins

ūa′γµ((pa + ma)γνua′

where we use Feynman’s notation (p = γµpµ. Putting in Dirac matrix indices,
ūαΓαβuβ = Tr (uūΓ). Hence

Lµν
a = 1

2Tr {((p′a + ma)γµ((pa + ma)γν}
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kµk′νLµν
a = 1

2Tr {((p′a + ma)(k((pa + ma)(k′}
= 1

2Tr {(p′a(k(pa(k′}+ 1
2m2

aTr {(k(k′}

= 2(p′a · kpa · k′ + pa · kp′a · k′ − pa · p′ak · k′ + m2
ak · k′)

(see examples sheet for last step).

● Removing the arbitrary vectors kµ and k′ν ,

Lµν
a = 2

[
pµ

ap′νa + p′µa pν
a − (pa · p′a −m2

a)gµν
]

and similarly

Lb
µν = 2

[
pbµp′bν + p′bµpbν − (pb · p′b −m2

b)gµν

]

so

Lµν
a Lb

µν = 8(pa · pb p′a · p′b + pa · p′b p′a · pb −m2
apb · p′b −m2

bpa · p′a + 2m2
am2

b)
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● Expressing this in terms of the Mandelstam invariants s, t and u, we find an
invariant differential cross section

dσ

dt
=

e2
ae2

b

32πst2(p∗a)2
[
s2 + u2 − 4(m2

a + m2
b)(s + u) + 6(m2

a + m2
b)

2
]

● For processes involving Dirac antiparticles, we should use the v-spinors in
place of u’s:

pa

pa

−
q

“ui”=ua, “ūf”=v̄′a ⇒ vertex factor −iev̄′aγµua.

q
pa
− pa’−

“ui”=v′a, “ūf”=v̄a ⇒ vertex factor −iev̄aγµv′a.
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● We also need ∑

spins

vv̄ = v↑v̄↑ + v↓v̄↓ = (p−m

N.B. Different sign of m!

● Note, however, that the tensor Lµν
a only involves m2

a. Replacing a by ā

reverses sign of ma, which does not affect the (unpolarized) scattering cross
section. Hence ab, āb, ab̄ and āb̄ scattering (by single photon exchange) are all
the same.
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Compton Scattering

p

ε’

p+k

’ε

+
’

p’

ε
k k ’

p−k ’

p p’

k
ε

k

● In the Compton scattering process γ + e→ γ + e, we need the propagator
factor for a virtual Dirac particle. This is

i

q2 −m2

∑

spins

uū =
i((q + m)
q2 −m2

● Compare with photon propagator

i

q2

∑

spins

εµε∗ν “=”
i(−gµν)

q2
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Thus the two graphs give Mfi = M1 +M2 where

M1 = ε′ν ū′(−ieγν)
i((p + (k + m)
(p + k)2 −m2

(−ieγµ)uεµ

M2 = εµū′(−ieγµ)
i((p− (k′ + m)
(p− k′)2 −m2

(−ieγν)uε′ν

● The relative phase is +1 because the graphs differ by exchange of identical
bosons.

● For the unpolarized case, we want to average over initial spin states and sum
over final ones. We know how to do this for the electrons. For the photons,
consider the incoming polarization εµ. We can write schematically

∑

spins

|M1 +M2|2 =
∑

ε=εx,εy

εµε∗λMµλ

where the tensor Mµλ is to be determined. However, we know that it must
have the properties kµMµλ = kλMµλ = 0 to ensure gauge invariance, which
allows us to replace εµ → εµ + akµ for any a.
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● Choose z-axis along k: kµ = |k|(1, 0, 0,−1). Then above property implies
M00 = M03 = M30 = M33, while

∑

ε=εx,εy

εµε∗λMµλ = M11 + M22

= M11 + M22 + M33 −M00

= −Mµ
µ = −gµλMµλ

● Thus, due to gauge invariance, we can replace photon polarization sum by
−gµλ.

● Applying the same trick to the outgoing photon polarization (ε′ν) sum, we find
a contribution from the first diagram of

1
4

∑

spins

|M1|2 =
e4

4(s−m2)2
Tr {((p′ + m)γν((p + (k + m)γµ((p + m)γµ((p + (k + m)γν}
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● In the extreme relativistic limit (s, |t|, |u| + m2), this becomes (using results
on examples sheet)

e4

s2
Tr {(p((p + (k)(p′((p + (k)} = 8

e4

s2
(p · k)(p′ · k)

= −2e4 u

s

● Other diagram and interference terms are left as an exercise.
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