This blog lists out several typical research papers with RMCProfile that I myself was involved.

Title: Hidden Local Symmetry Breaking in a Kagome-Lattice Magnetic Weyl Semimetal

Authors: Qiang Zhang, Yuanpeng Zhang, Masaaki Matsuda, Vasile Ovidiu Garlea, Jiaqiang Yan, Michael A. McGuire, D. Alan Tennant, and Satoshi Okamoto

Abstract: Exploring the relationship between intriguing physical properties and structural complexity is a central topic in studying modern functional materials. Co3Sn2S2, a newly discovered kagome-lattice magnetic Weyl semimetal, has triggered intense interest owing to the intimate coupling between topological semimetallic states and peculiar magnetic properties. However, the origins of the magnetic phase separation and spin glass state below TC in this ordered compound are two unresolved yet important puzzles in understanding its magnetism. Here, we report the discovery of local symmetry breaking surprisingly co-emerges with the onset of ferromagnetic order in Co3Sn2S2, by a combined use of neutron total scattering and half-polarized neutron diffraction. An anisotropic distortion of the cobalt kagome lattice at the atomic/nano level is also found, with distinct distortion directions among the two Co1 and four Co2 atoms. The mismatch of local and average symmetries occurs below TC, indicating that Co3Sn2S2 evolves to an intrinsically lattice disordered system when the ferromagnetic order is established. The local symmetry breaking with intrinsic lattice disorder provides new understanding of the puzzling magnetic properties. Our density functional theory (DFT) calculation indicates that the local symmetry breaking is expected to reorient local ferromagnetic moments, unveiling the existence of the ferromagnetic instability associated with the lattice instability. Furthermore, DFT calculation unveils that the local symmetry breaking could affect the Weyl property by breaking the mirror plane. Our findings highlight the fundamentally important role that the local symmetry breaking plays in advancing our understanding on the magnetic and topological properties in Co3Sn2S2, which may draw attention to explore the overlooked local symmetry breaking in Co3Sn2S2, its derivatives and more broadly in other topological Dirac/Weyl semimetals and kagome-lattice magnets.


Title: Ferroelectric Ordering in Nanosized PbTiO3

Authors: Qiang Li, Jing Sun, Yuanpeng Zhang, Tianyu Li, Hui Liu, Yili Cao, Qinghua Zhang, Lin Gu, Takashi Honda, Kazutaka Ikeda, Toshiya Otomo, Kun Lin, Jinxia Deng, and Xianran Xing

Abstract: The insight into the three-dimensional configuration of ferroelectric ordering in ferroelectric nanomaterials is motivated by the application of the development of functional nanodevices and the structural designing. However, the atomic deciphering of the spatial distribution of ordered structure remains challenging for the limitation of dimension and probing techniques. In this paper, a neutron pair distribution function (nPDF) was utilized to analyze the spontaneous polarization distribution of zero-dimensional PbTiO3 nanoparticles in three dimensions, via the application of reverse Monte Carlo (RMC) modeling. The comprehensive identification with transmission electron microscopy verified the linear characteristics of polarization along the c-axis in the main body, while electric polarization distribution on the surface was enhanced abnormally. In addition, the correlation of dipole vectors extending to three unit cells below the surface is retained. This work shows an application of the micro/macroscale information to effectively decode the polarization structure of nanoferroelectrics, providing new views of designing nanoferroelectric devices.


Title: Broad Distribution of Local Polar States Generates Large Electrothermal Properties in Pb-Free Relaxor Ferroelectrics

Authors: Frederick P. Marlton, Sanjib Nayak, Sarangi Venkateshwarlu, Ngai Hang Chan, Jing Kong, Yuanpeng Zhang, Matthew G. Tucker, Mads Ry Vogel Jørgensen, and Abhijit Pramanick

Abstract: Electrothermal energy conversion provides attractive solutions for global energy management, such as energy harvesting from waste heat using pyroelectric energy conversion (PEC) and efficient cooling of portable electronics or data servers using the electrocaloric effect. Relaxor ferroelectrics are attractive for electrothermal energy conversion because of their large pyroelectric coefficients over a wide temperature range. Although Pb-based relaxors are well-known, toxicity concerns have mandated the intense search for Pb-free alternatives. Here, we engineered (Ba,Ca)TiO3-based relaxors based on a multisite doping strategy, which show promising electrothermal performance, viz. a maximum PEC efficiency of 14% and electrocaloric refrigeration capacity of 115 J/kg. Using local-scale structural analysis, we provide an atomistic model for large electrothermal properties in the newly designed Pb-free ferroelectrics, whereby a temperature-independent continuous distribution of cation displacement directions creates easy pathways for microscopic polarization reorientation. This research provides key structural insight for future atomic-scale engineering of environmentally sustainable ferroelectrics in energy applications.


Title: Defect-free-induced Na+ disordering in electrode materials

Authors: Jian Peng, Mingyang Ou, Haocong Yi, Xueping Sun, Yuanpeng Zhang, Bao Zhang, Yu Ding, Feng Wang, Songqi Gu, Carlos Alberto López, Wang Zhang, Yi Liu, Ju Fang, Peng Wei, Yuyu Li, Ling Miao, Jianjun Jiang, Chun Fang, Qing Li, María Teresa Fernández-Díaz, José Antonio Alonso, Shulei Chou and Jiantao Han

Abstract: For reaching high-performance of electrode materials, it is generally believed that understanding the structure evolution and heterogeneous alignment effect is the key. Presently, a very simple and universally applicable self-healing method is investigated to prepare defect-free Prussian blue analogs (PBAs) that reach their theoretical capacity as cathode materials for sodium-ion batteries (SIBs). For direct imaging of the local structure and the dynamic process at the atomic scale, we deliver a fast ion-conductive nickel-based PBA that enables rapid Na+ extraction/insertion within 3 minutes and a capacity retention of nearly 100% over 4000 cycles. This guest-ion disordered and quasi-zero-strain nonequilibrium solid–solution reaction mechanism provides an effective guarantee for realizing long-cycle life and high-rate capability electrode materials that operate via reversible two-phase transition reaction. Unconventional materials and mechanisms that enable reversible insertion/extraction of ions in low-cost metal–organic frameworks (MOFs) within minutes have implications for fast-charging devices, grid-scale energy storage applications, material discovery, and tailored modification.


Title: Influence of Cation Size on the Local Atomic Structure and Electronic Properties of Ta Perovskite Oxynitrides

Authors: Xin Wang, Bo Jiang, Yuanpeng Zhang, Young-Il Kim, and Katharine Page*

Abstract: Partial anion substitution in transition metal oxides provides rich opportunities to control and tune physical and chemical properties, for example, combining the merits of oxides and nitrides. In addition, the possibility of resulting anion sublattice order provides a means to target polar and chiral structures based on a wide array of accessible structural archetypes by design. Here, we investigate the local structures of a family of perovskite tantalum oxynitrides—ATaO2N (A = Ba, Sr, and Ca)—using a combination of experimental and theoretical approaches including neutron total scattering, density functional theory (DFT), and ab initio molecular dynamics (AIMD) simulations. We present the first experimental study of chemical short-range order (CSRO) in CaTaO2N, confirming local cis N ordering of the anion sub-lattice. Our systematic exploration of a local structure across the A cation size series (from the larger Ba to the smaller Ca) reveals a perovskite motif increasingly distorted with respect to long-range average structures. DFT and AIMD simulations support the observed trends. Overall, structures with cis ordering of the nitrogen anions in each TaO4N2 octahedron are favored over those with trans ordering. With diminishing A cation size, local cis ordering and Ta off-centering play decreasing roles in overall lattice stability, overshadowed by the stabilizing effects of octahedral tilting. The influence of these factors on local dipole formation and frustrated dipole ordering are discussed.